skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Antunes de Sá, A. L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A particular strength of lightning remote sensing is the variety of lightning types observed, each with a unique occurrence context and characteristically different emission. Distinct energetic intracloud (EIC) lightning discharges—compact intracloud lightning discharges (CIDs) and energetic intracloud pulses (EIPs)—produce intense RF radiation, suggesting large currents inside the cloud, and they also have different production mechanisms and occurrence contexts. A Low‐Frequency (LF) lightning remote sensing instrument array was deployed during the RELAMPAGO field campaign in west central Argentina, designed to investigate convective storms that produce high‐impact weather. LF data from the campaign can provide a valuable data set for researching the lightning context of EICs in a variety of subtropical convective storms. This paper describes the production of an LF‐CID data set in RELAMPAGO and includes a preliminary analysis of CID prevalence. Geolocated lightning events and their corresponding observed waveforms from the RELAMPAGO LF data set are used in the classification of EICs. Height estimates based on skywave reflections are computed, where prefit residual data editing is used to improve robustness against outliers. Even if EIPs occurred within the network, given the low number of very high‐peak current events and receiver saturation, automatic classification of EIPs may not be feasible using this data. The classification of CIDs, on the other hand, is straightforward and their properties, for both positive and negative polarity, are investigated. A few RELAMPAGO case studies are also presented, where high variability of CID prevalence in ordinary storms and high‐altitude positive CIDs, possibly in overshooting tops, are observed. 
    more » « less